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Atmospheric sounding

For the supercell test case, we initialize the atmosphere with an idealized thermodynamic
sounding that has large CAPE (∼ 2200 m2s−2). Following Weisman et al. (1982, 1984,
1987), we specify the potential temperature profile θ̄(z) as
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where θ0 is the surface potential temperature, and θtr = 343 K represents the potential tem-
perature at the tropopause at ztr = 12 km. The stratosphere is isothermal at Ttr = 213 K.
The relative humidity profile H(z) is given by
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The initial water-vapor mixing ratio is defined from q̄v(z) = H(z)q̄vs, where the saturation
mixing ratio is taken from Klemp and Wilhelmson (1978, eq. 2.11):
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Here, the initial pressure p̄(z) is expressed in hPa. In addition, the mixing ratio is constrained
to a maximum value of qv0 = 14 g/kg to approximate a well-mixed boundary layer in the
lowest kilometer. The temperature and moisture profiles for this sounding are shown in Fig-
ure 1. The Convective Available Potential Energy (CAPE) for the sounding is about 2200
m2s−2, which is conducive for supercell formation.

In past idealized supercell simulations, we have used an environmental wind profile charac-
terized by a linear shear below zs = 5 km, with constant winds aloft. However, in balancing
the initial state on the sphere, a discontinuity in the wind shear (∂ū/∂z) leads to a discon-
tinuity in potential temperature away from the equator. Therefore, we have removed this
discontinuity by specifying a polynomial fit for ū for zs − 1000 < z < zs + 1000 that matches
the value and slope of ū at z = zs±1000. The mean wind is then scaled by cosφ to maintain
solid-body rotation at each level on the sphere, yielding:
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Figure 1. Mean wind and thermodynamic sounding at the equator for the supercell simulation on a re-
duced radius sphere.

We specify Us = 30 ms−1 to provide a strong wind shear that is conducive to supercell storm
development, and set a coordinate translation speed Uc = 15 ms−1 at the equator to render
the storm nearly stationary in the model coordinates. Defining Ueq = ū(0, z), the ground
relative initial wind at the equator is then Ueq + Uc (see Figure 1).

Although there is no Coriolis force in these simulations, the presence of vertical wind shear
requires latitudinal variation of the potential temperature and pressure to maintain a bal-
anced state in the absence of imposed perturbations. To achieve this balance, the initial
fields must satisfy both the hydrostatic equation:
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and the gradient wind equation:
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where θv is the virtual potential temperature and π is the Exner function, Cross differentiat-
ing these two equations and equating πφz, we obtain the following equation for θv:
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Figure 2. Deviation of potential temperature (K) and pressure (mb) from their values at the equator as a
function of latitude

where Ueq is the initial zonal wind at the equator. This equation can be readily solved by it-
eration (as indicated by the i superscripts), and is found to converge in 2-3 iterations. After
computing a balanced θv from (7), the corresponding balanced pressure is obtained from the
hydrostatic equation (5), after adjusting the pressure along the top of the domain using (6).
The moisture q̄v(z) is computed based on the thermodynamic sounding at the equator,and
does not vary with latitude. The variations of the balanced initial thermodynamic fields with
latitude are displayed in Figure 2. The maximum deviations (about 2.5o K for θ and -1 mb
for p occur at the surface at the poles. Notice that these variations from their values at the
equator depend only on latitude, and not on the radius reduction of the sphere.

Model domain configuration

For this supercell test case on a reduced-radius sphere, we specify a radius reduction factor
of X = 120, which provides a large enough sphere to maintain good quantitative correspon-
dence with comparable simulations on a flat plane (see further discussion in results section).
The simulation domain is 20 km in depth, with a uniform vertical grid spacing of ∆z = 500
m and a free-slip boundary condition is imposed along the lower surface. We begin with a
nominally uniform horizontal grid spacing of about 500 m, which appears to yield nearly
converged solutions with the diffusion specified as outlined below. Coarser horizontal grids
may also be considered to evaluate the dependence of simulated storm evolution as a func-
tion of horizontal resolution. With the 500 m grid, we integrate MPAS forward in time using
a 3 s time step.
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Initial thermal perturbation

To initiate convection, a thermal perturbation is introduced in the initial potential tempera-
ture field. It is defined according to the expression
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
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Here, r(λ, φ, λc, φc) is the great circle distance from the center of the thermal perturbation at
(λc, φc), and is defined (see DCMIP eq. 77) by

r(λ, φ, λc, φc) =
aref
X

arccos[sinφc sinφ+ cosφc cosφ cos(λ− λc)]. (10)

The parameters in (8)-(9) are specified as ∆θ = 3 K, rh = 10 km, and zc = rz = 1.5 km.

Cloud microphysics

To represent the cloud microphysical processes, we utilize a simple Kessler parameterization
that contains three moisture species: water vapor (qv), cloud water (qc), and rain water (qr).
This parameterization (described in Klemp and Wilhelmson, 1978) is called at the end of
each time step and updates the potential temperature and moisture variables according to
the equations:
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Here, L is the latent heat of condensation, Ar is the autoconversion rate of cloud water to
rain water, CR is the collection rate of rain water, Er is the rain water evaporation rate, and
Vr is the rain water terminal velocity. For each variable φ, ∆φ = φt+∆t − φ∗, where φ∗ is the
value at the new time level prior to the final microphysics update. A listing of the fortran
code for this parameterization is contained in the file kessler z.pdf.

Physical and numerical diffusion

Dissipation is an important component of convective storm simulations. Because the small-
est scales tend to be the most unstable, the dominant scales of the evolving convection are
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strongly influenced by the relative strengths of latent heating and dissipation at the smaller
scales. For this test case, we have specified constant-coefficient (ν = 500 m2/s) second order
diffusion terms (both horizontal and vertical) in each of the prognostic equations, with an in-
verse Prandtl number of 3 for the scalar equations. In the vertical direction, this mixing is
applied to the perturbation from the initial mean state to prevent the initial balanced state
from being mixed out. Although this is not as realistic as a sub-grid TKE or Smagorinski
scheme, using a constant physical viscosity allows the numerical solutions to be converged as
the grid is sufficiently refined (which will not occur using TKE or Smagorinsky because of
their dependence on the grid scale).

We have also experimented with using fourth order horizontal filters instead of second or-
der diffusion terms. In these tests, we found that it was necessary to retain the second order
vertical diffusion as described above in order to avoid accumulating significant noise in the
evolving fields. With the fourth order horizontal filters, the storm system evolved somewhat
more rapidly and exhibited more smaller scale structure.

Example results

Simulations were integrated over a 2 h time interval. Figure 4 illustrates the evolution of the
maximum vertical velocity during the simulations. The rapid rise in wmax over the initial
40-50 minutes is associated with the growth of the initial convective cell. As this initial cell
splits into two rotating super cells, wmax levels off and maintains an amplitude in the range
40-45 m s−1. Figure 5 displays the evolution of the vertical velocity and rain water fields at
5 km at half-hour intervals. Here the latitudinal position of the fields are shown based on a
ground relative framework (i.e. the Uc = 15 m s−1 has been added back into the transla-
tion speed of the storm). By 1 h, the initial updraft has split into two distinct updraft cells,
which then propagate farther apart over the second hour.

Figure 6 displays these results at 2 h along with the corresponding fields from the simulation
on a flat plane with ∆ ∼ 500 m and the simulation on the X = 120 reduced-radius sphere
with ∆ ∼ 1000 m. The structures of vertical velocity and rain water fields for ∆ ∼ 500 m
are quite similar in the flat-plane and reduced-radius sphere simulations, suggesting that for
X = 120 the artificial curvature effects on the sphere are not very significant. The reduced-
radius sphere simulation for ∆ ∼ 1000 m maintains the overall splitting supercell structure
although a number of quantitative differences are evident. The maximum updraft velocity
has some higher frequency variation (Figure 4) and by 2 h stronger secondary convection is
developing between the two storms.

Figure 7 displays the vertical velocity fields at z = 2.5 km at 2 h for these same three simula-
tions, along with the location of the leading edge of the surface cold pool (taken here as the
-0.3◦ potential temperature contour at the lowest at the lowest model half level at z = 250
m). At this 2.5 km level the updrafts are clearly aligned above the convergence line that
forms along the edge of the surface cold pool. Notice that in the X = 120 simulations the
cold pool (and the lower level updrafts) extend laterally to slightly higher latitudes in than
in the flat plane simulation. We believe that these differences are caused by the differing en-
vironmental conditions that the storms encounter as they propagate to higher latitudes. The
speed at which the cold pool of air spreads out beneath the storm is governed in part by the

5



Figure 4. Maximum vertical velocity of supercell updraft for simulation on a flat plane with ∆ ∼ 500 m
(black line), on the reduced-radius sphere with X = 120 and ∆ ∼ 500 m (red line), and on the reduced-
radius sphere with X = 120 and ∆ ∼ 1000 m (green line).

temperature difference across the leading edge of the pool (analogous to a gravity current).
In the X = 120 simulations, the low-level environmental air is somewhat warmer at higher
latitudes due to the gradient wind balance imposed on the initial environmental state (see
Figure 2). Thus, the cold pool and its associated convergence line in the X = 120 simula-
tions propagate laterally a little more rapidly with increasing latitude than in the simulation
on a flat plane.
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Figure 5. Horizontal cross sections for the simulation with X = 120 and ∆ ∼ 500 m at 5 km at 30 min
intervals for (a) vertical velocity (c.i. = 2 ms−1) and (b) rain water (c.i = 1 gm/kg).
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Figure 6. Horizontal cross sections at 5 km at 2 h of (a) vertical velocity (c.i. = 2 ms−1), and (b) rain
water (c.i = 1 gm/kg). Fields are displayed for simulations on a flat plane with ∆ ∼ 500 m (left), on the
reduced-radius sphere with X = 120 and ∆ ∼ 500 m (middle), and on the reduced-radius sphere with
X = 120 and ∆ ∼ 1000 m (right).
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Figure 7. Horizontal cross sections at 2.5 km at 2 h of vertical velocity (c.i. = 1 ms−1, displayed for sim-
ulations on a flat plane with ∆ ∼ 500 m (left), on the reduced-radius sphere with X = 120 and ∆ ∼ 500
m (middle), and on the reduced-radius sphere with X = 120 and ∆ ∼ 1000 m (right).The heavy solid line
depicts the location of the leading edge of the surface cold pool.
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